Posts tagged: photoset

view GIFs in hi-res here (700x700)

Mathematica code:

F[a_, L_, r_, s_, t_] :=
Table[
{-(r + s*Cos[t])^n*Sin[n*a], (r + s*Cos[t])^n*Cos[n*a]}, {n, 0, L}]

V :=
{{1.45631, 556, .995, .003}, {2.94712, 502, .998, .001},
{4.50891, 485, .9955, .0025}, {4.9367, 630, .997, .002}}

Table[
ListAnimate[
Table[
Graphics[
Polygon[
F[Part[Part[V, G], 1], Part[Part[V, G], 2], Part[Part[V, G], 3], Part[Part[V, G], 4], t]],
PlotRange -> 1, ImageSize -> 250],
{t, 0, 2 Pi, 2 Pi/40}]],
{G,1,4,1}

view GIFs in high-res (700x700) here

Mathematica code:

Table[
ListAnimate[
Table[
Graphics[
{White, Line[
Table[
{-.99^n*Sin[n*a], .99^n*Cos[n*a]},
 {n, 0, 700}]]},
PlotRange -> 1, ImageSize -> 250, Background -> Black],
{a, 2 Pi/p, 2 Pi/(p + 1), (2 Pi/(p + 1) - 2 Pi/p)/75}]],
{p, 3, 6, 1}]

Mathematica code:

Animate[
Graphics[
Rotate[
Table[
{Thickness[.0134],
Circle[{23*Cos[i*Pi/2], 23*Sin[i*Pi/2]},
  t + (44 - n) (1 + Sign[44 - n])/2]}, {n, 0, 100, 1},
{i, 0, 3, 1}],
Pi/4],
PlotRange -> 16.5, ImageSize -> 500],
{t, 0, 1}]

click through to animate in high-res: 500x500
(view original color function here)

Mathematica code:

Animate[ 
DensityPlot[
Sin[r*Abs[(x + I y)]],
{x, -2.5, 2.5}, {y, -2.5, 2.5},
PlotPoints -> 15, Mesh -> False, Frame -> False, ColorFunction -> Hue],
{r, 1982.2, 1983.1, .1}]


zoom out: x1, x2

r = 1

10.471 ≤ a ≤ 10.473

s = 800

Mathematica code:

Manipulate[
Graphics[
Line[
Table[{-r^n*Sin[n*a], r^n*Cos[n/a]}, {n, 0, s}]],
PlotRange -> 1.3],
{r, .1, 1}, {a, .001, 4*Pi, .001}, {s, 1, 800, 1}]



Mathematica code:

Manipulate[
Graphics[
{Point[Tuples[Range[0, 50], 2]],
Point[Tuples[Range[0 + x, 50], 2]]},
PlotRange -> {{-1, 51}, {-1, 51}}],
{x, 0, 1, .01}]




Mathematica code:

With[{g = Tuples[Range[-1.5, 1.5, .1], 2]},
Animate[Module[{pt = {1 - q, q}},
Graphics[{PointSize[Small],
Point[Map[(# + 3 (# - pt) 2^(-5 Norm[# - pt])) &, g]]},
PlotRange -> 1.7]], {q, 0, 1}, AnimationRunning -> False]]

zoom in: x1
zoom out: x1

Detail:

zoom in: x1, x2


Created with Mathematica

Detail:




Flying through Euclidean 3-space

View as a single GIF here