Posts tagged: PS

The second GIF is supposed to simulate what the first GIF may look like if viewed with your monitor angled downwards. It is the same as the first except the brightness was increased using Photoshop.

Mathematica code:

R[n_] := (SeedRandom[n]; RandomReal[])G[A_, s_, c_, T_, x_] := A*T*Exp[-(x - c)^2/s]ListAnimate[ Show[   Table[    Plot[     100 - n +      Sum[G[.05, 6, 100*R[n],                  Sum[G[1, .01, k - R[2 n], 1, m/100 + t],                  {k, -3, 3, 1}],                 x],     {n, 1, 100, 1}],    {x, -10, 110}],    PlotStyle -> Directive[Black], PlotRange -> {{-10, 110}, {0, 100.5}},    Filling -> Axis, FillingStyle -> White, Axes -> False, AspectRatio -> Full,     ImageSize -> {500, 700}],  {n, 0, 100, 1}]],{t, 0, .95, .5}, AnimationRunning->False]
Filed under: #GIF  #Mathematica  #PS  #waterfall plot  #wavy

Mathematica code:

f[x_, y_] := {Log[Sqrt[(x)^2 + (y)^2]], ArcTan[x, y]}ListAnimate[  Table[    ImageTransformation[     ImageResize[ImageTake[ImageCrop[       DensityPlot[         Sin[104.54*Abs[(x + I y)^2]],        {x, -2.5, 2.5}, {y, -2.5, 2.5}, PlotPoints -> 27,        Mesh -> False, Frame -> False, ColorFunction -> Hue, ImageSize -> 834],     800], {100 + t, 700 + t}, {100 - t, 700 - t}],{500, 500}],    f[#[[1]], #[[2]]] &, DataRange -> {{-Pi, Pi}, {-Pi, Pi}}], {t, 0, 90, 10}],10, AnimationRunning -> False]

Mathematica code:

f[x_, y_] := {Log[Sqrt[(x)^2 + (y)^2]], ArcTan[x, y]}Export["5wQCGSlogpolar.gif", Table[  ImageTransformation[Part[    Table[     ImageCrop[Part[       Table[        DensityPlot[          Sum[           Cos[(Cos[n*2*Pi/5] + Sin[n*2*Pi/5])*x + (Cos[n*2*Pi/5] - Sin[n*2*Pi/5])*y + t],           {n, 0, 4, 1}], {x, -100, 100}, {y, -100, 100},         PlotPoints -> 100, Mesh -> False, Frame -> False,          ColorFunction -> GrayLevel, ImageSize -> 522],       {t, 0, 2 Pi, 2 Pi/30}], i],      500], {i, 1, 30, 1}], j],   f[#[[1]], #[[2]]] &, DataRange -> {{-Pi, Pi}, {-Pi, Pi}}],  {j, 1, 30, 1}]]

Mathematica code:

Animate[
DensityPlot[       Sum[.20*Cos[(Cos[n*2*Pi/5] + Sin[n*2*Pi/5])*x + (Cos[n*2*Pi/5] - Sin[n*2*Pi/5])*y + t]^10,        {n, 0, 4, 1}], {x, -25, 25}, {y, -25, 25},     PlotPoints -> 50, Mesh -> False, Frame -> False, ColorFunction -> GrayLevel, ImageSize -> 521],{t, 0, 2*Pi, Pi/20}]
Filed under: #GIF  #Mathematica  #PS  #aperiodic

Mathematica code:

Animate[    DensityPlot[        Sum[Cos[(Cos[n*2*Pi/23] + Sin[n*2*Pi/23])*x + (Cos[n*2*Pi/23] - Sin[n*2*Pi/23])*y + t],         {n, 0, 22, 1}], {x, -150, 150}, {y, -150, 150},     PlotPoints -> 150, Mesh -> False, Frame -> False, ColorFunction -> Hue, ImageSize -> 522],{t, 0, 2*Pi, Pi/10}]

Mathematica code:

Animate[    DensityPlot[        Sum[Cos[(Cos[n*2*Pi/13] + Sin[n*2*Pi/13])*x + (Cos[n*2*Pi/13] - Sin[n*2*Pi/13])*y + t],         {n, 0, 12, 1}], {x, -100, 100}, {y, -100, 100},     PlotPoints -> 100, Mesh -> False, Frame -> False, ColorFunction -> Hue, ImageSize -> 520],{t, 0, 2*Pi, Pi/10}]

Mathematica code:

Animate[   DensityPlot[     Sum[Cos[(Cos[n*2*Pi/9] + Sin[n*2*Pi/9])*x + (Cos[n*2*Pi/9] - Sin[n*2*Pi/9])*y + t],      {n, 0, 8, 1}], {x, -70, 70}, {y, -70, 70},   PlotPoints -> 150, Mesh -> False, Frame -> False, ColorFunction -> Hue, ImageSize -> 500],{t, 0, 2*Pi, Pi/20}]

Mathematica code:

Table[    DensityPlot[     Sum[Cos[(Cos[n*2*Pi/9] + Sin[n*2*Pi/9])*x + (Cos[n*2*Pi/9] - Sin[n*2*Pi/9])*y + t],      {n, 0, 8, 1}], {x, -70, 70}, {y, -70, 70},   PlotPoints -> 100, Mesh -> False, Frame -> False, ColorFunction -> Hue, ImageSize -> 520],{t, { Pi/10, 4*Pi/10, 8*Pi/10, 18*Pi/10}]

Mathematica code:

Animate[  Graphics[     Table[       {Thickness[.012],        Circle[{80*Cos[i*Pi/3], 80*Sin[i*Pi/3]},        t + (100 - n) (1 + Sign[100 - n])/2]}, {n, 0, 100, 1},      {i, 0, 5, 1}],     PlotRange -> 12, ImageSize -> 500],{t, 0, 1}]
Filed under: #GIF  #Mathematica  #PS  #aperiodic

w/ color:

Mathematica
code:

Animate[    DensityPlot[    Sin[r*Abs[(x + I y)^-1]],     {x, -2.5, 2.5}, {y, -2.5, 2.5},   PlotPoints -> 35, Mesh -> False, Frame -> False, ColorFunction -> Hue],{r, 240, 200, 1}]

Tumblr wont let me upload the colored version so here it is:

Thank you psykzz for sharing some of your magic gif tips with me!

Mathematica
code:

Animate[    DensityPlot[    Sin[r*Abs[(x + I y)^-1]],     {x, -2.5, 2.5}, {y, -2.5, 2.5},   PlotPoints -> 23, Mesh -> False, Frame -> False, ColorFunction -> Hue],{r, 140, 116, 1}]

Mathematica code:

 Animate[   Graphics[     Table[      {Thickness[.003],       Circle[{40*Cos[i*Pi/8], 40*Sin[i*Pi/8]},        t + (100 - n) (1 + Sign[100 - n])/2]},     {n, 0, 100, 1}, {i, 0, 16, 1}],   PlotRange -> 10],{t, 0, 1, .05}]
Filed under: #GIF  #Mathematica  #PS  #aperiodic

Mathematica code:

Animate[ Graphics[  Line[   Table[{-.98^n*Sin[n*Pi/2], .98^n*Cos[n*Pi/2]}, {n, 0, 1000}]], PlotRange -> p],{p, .39, .37, .01}]

(view original color function here)

Mathematica code:

Animate[    DensityPlot[    Sin[r*Abs[(x + I y)^1.1]],     {x, -1.25, 1.25}, {y, 0, 2.5},   PlotPoints -> 27, Mesh -> False, Frame -> False, ColorFunction -> Hue],{r, 88.5, 68.5, .5}]
Filed under: #GIF  #Mathematica  #density plot  #PS

(view original color function here)

Mathematica code:

Animate[    DensityPlot[    Sin[r*Abs[(x + I y)^2]],     {x, -2.5, 2.5}, {y, -2.5, 2.5},   PlotPoints -> 50, Mesh -> False, Frame -> False, ColorFunction -> Hue],{r,1234.7, 1235.7, .1}]
Filed under: #GIF  #Mathematica  #density plot  #PS