Posts tagged: CTD

Filed under: #GIF  #Mathematica  #CTD

Watch in ‘HD’ (1280x720) here

This video shows continuous variation in angle for three different regions of the connect-the-dots algorithm while keeping all other parameters fixed. Unlike the previous video, there is no length contraction of the lines in the iteration. Each instant is a valid 2-coloring.

Music: â€œIntensives Leben” by Triosk

Mathematica code:

S := {{2.8785, .000004, 300, 1000},   {3.05165, .000005, 361, 1070},   {2.6985, .000007 , 301, 929}}Manipulate[ ImageCrop[  Graphics[   GraphicsComplex[    Table[     {-Sin[n*(Part[Part[S, s], 1] + Part[Part[S, s], 2] f)],       Cos[n*(Part[Part[S, s], 1] + Part[Part[S, s], 2] f)]},     {n, 0, Part[Part[S, s], 3]}],   Polygon[Table[i, {i, 1, Part[Part[S, s], 3], 1}]]],   PlotRange -> .826787, ImageSize -> 1280], {1280, 720}],{s, {1, 2, 3}}, {f, 1, Part[Part[S, s], 4], 1}]
Filed under: #video  #2color  #CTD  #Mathematica  #Triosk

This video shows continuous variation in angle (from 0 to Pi) of the connect-the-dots algorithm while keeping all other parameters fixed. Each instant is a valid 2-coloring.

Music: “Derbyshire” by Nerve

Mathematica code:

Manipulate[  ImageCrop[   Graphics[    GraphicsComplex[     Table[      {-(.96)^n*Sin[n*.001 f], .96^n*Cos[n*.001 f]},      {n, 0, 300}],    Polygon[Table[i, {i, 1, 300, 1}]]],   PlotRange -> .1, ImageSize -> 640], {640, 480}],{f, 1, 3145, 1}]
Filed under: #video  #2color  #CTD  #Mathematica  #Nerve

800x800

center detail

Mathematica code:

Graphics[ GraphicsComplex[  Table[   {-.9908^n*Sin[n*3.87613], .9908^n*Cos[n*3.87613]}, {n, 0, 750}],  Polygon[Table[i, {i, 1, 750, 1}]]],  PlotRange -> 1, ImageSize -> 800]
Filed under: #2color  #CTD  #Mathematica

800x800

Mathematica code:

Graphics[ GraphicsComplex[  Table[   {-.9908^n*Sin[n*3.87613], .9908^n*Cos[n*3.87613]}, {n, 0, 750}],  Polygon[Table[i, {i, 1, 750, 1}]]],  PlotRange -> .05, ImageSize -> 800]
Filed under: #2color  #CTD  #Mathematica

800x800

center detail

Mathematica code:

Graphics[ GraphicsComplex[  Table[   {-.99^n*Sin[n*3.21], .99^n*Cos[n*3.21]}, {n, 0, 700}],  Polygon[Table[i, {i, 1, 700, 1}]]],  PlotRange -> .4, ImageSize -> 800]
Filed under: #2color  #CTD  #Mathematica

800x800

Mathematica code:

Graphics[ GraphicsComplex[  Table[   {-.99^n*Sin[n*3.21], .99^n*Cos[n*3.21]}, {n, 0, 700}],  Polygon[Table[i, {i, 1, 700, 1}]]],  PlotRange -> .05, ImageSize -> 800]
Filed under: #2color  #CTD  #Mathematica

800x800

center detail

Mathematica code:

Graphics[ GraphicsComplex[  Table[   {-.9908^n*Sin[n*3.72802], .9908^n*Cos[n*3.72802]}, {n, 0, 640}],  Polygon[Table[i, {i, 1, 640, 1}]]],  PlotRange -> 1, ImageSize -> 800]
Filed under: #2color  #CTD  #Mathematica

800x800

Mathematica code:

Graphics[ GraphicsComplex[  Table[   {-.9908^n*Sin[n*3.72802], .9908^n*Cos[n*3.72802]}, {n, 0, 640}],  Polygon[Table[i, {i, 1, 640, 1}]]],  PlotRange -> .25, ImageSize -> 800]
Filed under: #2color  #CTD  #Mathematica

800x800

center detail

Mathematica code:

Graphics[ GraphicsComplex[  Table[   {-.99^n*Sin[n*3.87], .99^n*Cos[n*3.87]}, {n, 0, 640}],  Polygon[Table[i, {i, 1, 640, 1}]]],  PlotRange -> 1, ImageSize -> 800]
Filed under: #2color  #CTD  #Mathematica

800x800

Mathematica code:

Graphics[ GraphicsComplex[  Table[   {-.99^n*Sin[n*3.87], .99^n*Cos[n*3.87]}, {n, 0, 640}],  Polygon[Table[i, {i, 1, 640, 1}]]],  PlotRange -> .25, ImageSize -> 800]
Filed under: #2color  #CTD  #Mathematica

800x800

center detail

Mathematica code:

Graphics[ GraphicsComplex[  Table[   {-.99^n*Sin[n*3.799], .99^n*Cos[n*3.799]}, {n, 0, 600}],  Polygon[Table[i, {i, 1, 600, 1}]]],  PlotRange -> 1, ImageSize -> 800]
Filed under: #2color  #CTD  #Mathematica

800x800

Mathematica code:

Graphics[ GraphicsComplex[  Table[   {-.99^n*Sin[n*3.799], .99^n*Cos[n*3.799]}, {n, 0, 600}],  Polygon[Table[i, {i, 1, 600, 1}]]],  PlotRange -> .25, ImageSize -> 800]
Filed under: #2color  #CTD  #Mathematica

800x800

center detail

Mathematica code:

Graphics[ GraphicsComplex[  Table[   {-.99^n*Sin[n*3.941], .99^n*Cos[n*3.941]}, {n, 0, 600}],  Polygon[Table[i, {i, 1, 600, 1}]]],  PlotRange -> 1, ImageSize -> 800]
Filed under: #2color  #CTD  #Mathematica

800x800

Mathematica code:

Graphics[ GraphicsComplex[  Table[   {-.99^n*Sin[n*3.941], .99^n*Cos[n*3.941]}, {n, 0, 600}],  Polygon[Table[i, {i, 1, 600, 1}]]],  PlotRange -> .25, ImageSize -> 800]
Filed under: #2color  #CTD  #Mathematica