Posts tagged: Bridget Riley

Some more inspiration from Bridget Riley — think Blaze 1 (1962).
The first image is what you get after transforming the second image into log-polar coordinates.

Mathematica code:

WfPlot[  t_ ] :=
Graphics[
Table[
{AbsoluteThickness[3],
Line[
Table[
{i + If[Mod[i, 2] == 0, .5*Sin[j*2 Pi/66 + t], 0],
(-1)^i*.5 + .4*j},
 {i, 1, 19}]]},
{j, 1, 69, 1}],
PlotRange -> {{1, 19}, {.8, 27.2}},
ImageSize -> {500, 500}]


Manipulate[
WfPlot[ t ],
{t, 0, 2Pi}]

LogPolar[x_, y_] := {Log[Sqrt[x^2 + y^2]], ArcTan[x, y]}

Manipulate[
ImageTransformtion[
WfPlot[ t ],
LogPolar[#[[1]], #[[2]]] &, DataRange -> {{-Pi, Pi}, {-Pi, Pi}}],
{t,0,2Pi}]

Inspired by Bridget Riley - Descending (1965)
Mathematica code:
WPlot[x_, y_, h_, k_, N_, R_, m_, s_, w_, v_, t_, px_, py_] := Graphics[  Table[   {AbsoluteThickness[k],     Line[Table[{x*i +          If[Mod[i, 2] == m, s*x*Sin[j*2 Pi/w + i*2 Pi/v + t], 0],         (-1)^i*y + h*j}, {i, 1, N}]]},   {j, 1, R, 1}],  PlotRange -> {{x + px, N*x - px}, {h - y + py, R*h - y}},   ImageSize -> {500, 700}  ]P={1, 0.5, 0.4, 4, 19, 66, 0, 0.5, 0.99, 0.94, 2.12749, 0., 0.644}Manipulate[ WPlot[P[[1]], P[[2]], P[[3]], P[[4]], P[[5]], P[[6]], P[[7]],           P[[8]],  P[[9]], P[[10]], t, P[[12]], P[[13]]],{t, 0, 2 Pi}]

Inspired by Bridget Riley - Descending (1965)

Mathematica code:

WPlot[x_, y_, h_, k_, N_, R_, m_, s_, w_, v_, t_, px_, py_] :=
Graphics[
Table[
{AbsoluteThickness[k],
Line[Table[{x*i +
If[Mod[i, 2] == m, s*x*Sin[j*2 Pi/w + i*2 Pi/v + t], 0],
 (-1)^i*y + h*j}, {i, 1, N}]]},
{j, 1, R, 1}],
PlotRange -> {{x + px, N*x - px}, {h - y + py, R*h - y}},
ImageSize -> {500, 700}
]

P={1, 0.5, 0.4, 4, 19, 66, 0, 0.5, 0.99, 0.94, 2.12749, 0., 0.644}

Manipulate[
WPlot[P[[1]], P[[2]], P[[3]], P[[4]], P[[5]], P[[6]], P[[7]],
P[[8]], P[[9]], P[[10]], t, P[[12]], P[[13]]],
{t, 0, 2 Pi}]