Posts tagged: Bridget Riley

Some more inspiration from Bridget Riley — think Blaze 1 (1962).
The first image is what you get after transforming the second image into log-polar coordinates.

Mathematica code:

WfPlot[  t_ ] := Graphics[  Table[   {AbsoluteThickness[3],     Line[     Table[      {i + If[Mod[i, 2] == 0, .5*Sin[j*2 Pi/66 + t], 0],       (-1)^i*.5 + .4*j},     {i, 1, 19}]]},   {j, 1, 69, 1}],  PlotRange -> {{1, 19}, {.8, 27.2}},   ImageSize -> {500, 500}]Manipulate[ WfPlot[ t ],{t, 0, 2Pi}]LogPolar[x_, y_] := {Log[Sqrt[x^2 + y^2]], ArcTan[x, y]}Manipulate[  ImageTransformtion[   WfPlot[ t ],  LogPolar[#[[1]], #[[2]]] &, DataRange -> {{-Pi, Pi}, {-Pi, Pi}}],{t,0,2Pi}]

Inspired by Bridget Riley - Descending (1965)

Mathematica code:

WPlot[x_, y_, h_, k_, N_, R_, m_, s_, w_, v_, t_, px_, py_] := Graphics[  Table[   {AbsoluteThickness[k],     Line[Table[{x*i +          If[Mod[i, 2] == m, s*x*Sin[j*2 Pi/w + i*2 Pi/v + t], 0],         (-1)^i*y + h*j}, {i, 1, N}]]},   {j, 1, R, 1}],  PlotRange -> {{x + px, N*x - px}, {h - y + py, R*h - y}},   ImageSize -> {500, 700}  ]P={1, 0.5, 0.4, 4, 19, 66, 0, 0.5, 0.99, 0.94, 2.12749, 0., 0.644}Manipulate[ WPlot[P[[1]], P[[2]], P[[3]], P[[4]], P[[5]], P[[6]], P[[7]],           P[[8]],  P[[9]], P[[10]], t, P[[12]], P[[13]]],{t, 0, 2 Pi}]