Inspired by Visual illusions based on single-field contrast asynchronies and by beesandbombs.
Mathematica code:
v[a_] :=  {{Cos[a], 0},  {0, Sin[a]},  {Sin[a], Cos[a] + Sin[a]},  {0, 2 Cos[a] + Sin[a]},  {Cos[a], 2 Cos[a] + 2 Sin[a]},  {Cos[a] + Sin[a], Cos[a] + 2 Sin[a]},  {Cos[a] + 2 Sin[a], 2 Cos[a] + 2 Sin[a]},  {2 Cos[a] + 2 Sin[a], 2 Cos[a] + Sin[a]},  {2 Cos[a] + Sin[a], Cos[a] + Sin[a]},  {2 Cos[a] + 2 Sin[a], Sin[a]},  {Cos[a] + 2 Sin[a], 0},  {Cos[a] + Sin[a], Cos[a]}}q[a_, b_, f_, w0_, w1_, w2_, w3_, t_] := {{GrayLevel[b + f*Sin[2 Pi (w0 + t)]],    Polygon[{v[a][[12]], v[a][[1]], v[a][[2]], v[a][[3]]}]},  {GrayLevel[b - f*Sin[2 Pi (w1 + t)]],    Polygon[{v[a][[3]], v[a][[4]], v[a][[5]], v[a][[6]]}]},  {GrayLevel[b - f*Sin[2 Pi (w2 + t)]],    Polygon[{v[a][[9]], v[a][[10]], v[a][[11]], v[a][[12]]}]},  {GrayLevel[b + f*Sin[2 Pi (w3 + t)]],    Polygon[{v[a][[6]], v[a][[7]], v[a][[8]], v[a][[9]]}]},  {Thick, GrayLevel[b + f], Line[{v[a][[1]], v[a][[2]], v[a][[3]]}]},  {Thick, GrayLevel[b - f], Line[{v[a][[3]], v[a][[12]], v[a][[1]]}]},  {Thick, GrayLevel[b - f], Line[{v[a][[3]], v[a][[4]], v[a][[5]]}]},  {Thick, GrayLevel[b + f], Line[{v[a][[5]], v[a][[6]], v[a][[3]]}]},  {Thick, GrayLevel[b + f], Line[{v[a][[11]], v[a][[12]], v[a][[9]]}]},  {Thick, GrayLevel[b - f], Line[{v[a][[9]], v[a][[10]], v[a][[11]]}]},  {Thick, GrayLevel[b - f], Line[{v[a][[9]], v[a][[6]], v[a][[7]]}]},  {Thick, GrayLevel[b + f], Line[{v[a][[9]], v[a][[8]], v[a][[7]]}]}}Manipulate[ With[{pr = 6, h = 2, v = 3, b = .8, f = .2, w0 = 0, w1 = 1/8, w2 = 2/8, w3 = 3/8, a = .9},  Graphics[   Table[    Translate[     Table[      Translate[       q[a, b, f, w0 + x/4 + y/4, w1 + x/4 + y/4, w2 + x/4 + y/4, w3 + x/4 + y/4, t],       y {0, Sin[a] + 2 Cos[a] + Sin[a]}],      {y, -v - 1, v, 1}],     x {2 Cos[a] + 2 Sin[a], 0}],    {x, -h - 1, h, 1}], PlotRange -> {{-pr, pr}, {-7/5 pr, 7/5 pr}}, Background -> GrayLevel[b], ImageSize -> 500]], {t, 0, .95, .05 }]

Inspired by Visual illusions based on single-field contrast asynchronies and by beesandbombs.

Mathematica code:


v[a_] :=
{{Cos[a], 0},
{0, Sin[a]},
{Sin[a], Cos[a] + Sin[a]},
{0, 2 Cos[a] + Sin[a]},
{Cos[a], 2 Cos[a] + 2 Sin[a]},
{Cos[a] + Sin[a], Cos[a] + 2 Sin[a]},
{Cos[a] + 2 Sin[a], 2 Cos[a] + 2 Sin[a]},
{2 Cos[a] + 2 Sin[a], 2 Cos[a] + Sin[a]},
{2 Cos[a] + Sin[a], Cos[a] + Sin[a]},
{2 Cos[a] + 2 Sin[a], Sin[a]},
{Cos[a] + 2 Sin[a], 0},
{Cos[a] + Sin[a], Cos[a]}}

q[a_, b_, f_, w0_, w1_, w2_, w3_, t_] :=
{{GrayLevel[b + f*Sin[2 Pi (w0 + t)]],
Polygon[{v[a][[12]], v[a][[1]], v[a][[2]], v[a][[3]]}]},
{GrayLevel[b - f*Sin[2 Pi (w1 + t)]],
Polygon[{v[a][[3]], v[a][[4]], v[a][[5]], v[a][[6]]}]},
{GrayLevel[b - f*Sin[2 Pi (w2 + t)]],
Polygon[{v[a][[9]], v[a][[10]], v[a][[11]], v[a][[12]]}]},
{GrayLevel[b + f*Sin[2 Pi (w3 + t)]],
Polygon[{v[a][[6]], v[a][[7]], v[a][[8]], v[a][[9]]}]},
{Thick, GrayLevel[b + f], Line[{v[a][[1]], v[a][[2]], v[a][[3]]}]},
{Thick, GrayLevel[b - f], Line[{v[a][[3]], v[a][[12]], v[a][[1]]}]},
{Thick, GrayLevel[b - f], Line[{v[a][[3]], v[a][[4]], v[a][[5]]}]},
{Thick, GrayLevel[b + f], Line[{v[a][[5]], v[a][[6]], v[a][[3]]}]},
{Thick, GrayLevel[b + f], Line[{v[a][[11]], v[a][[12]], v[a][[9]]}]},
{Thick, GrayLevel[b - f], Line[{v[a][[9]], v[a][[10]], v[a][[11]]}]},
{Thick, GrayLevel[b - f], Line[{v[a][[9]], v[a][[6]], v[a][[7]]}]},
{Thick, GrayLevel[b + f], Line[{v[a][[9]], v[a][[8]], v[a][[7]]}]}}

Manipulate[
With[{pr = 6, h = 2, v = 3, b = .8, f = .2, w0 = 0, w1 = 1/8, w2 = 2/8, w3 = 3/8, a = .9},
Graphics[
Table[
Translate[
Table[
Translate[
q[a, b, f, w0 + x/4 + y/4, w1 + x/4 + y/4, w2 + x/4 + y/4, w3 + x/4 + y/4, t],
y {0, Sin[a] + 2 Cos[a] + Sin[a]}],
{y, -v - 1, v, 1}],
x {2 Cos[a] + 2 Sin[a], 0}],
{x, -h - 1, h, 1}],
PlotRange -> {{-pr, pr}, {-7/5 pr, 7/5 pr}}, Background -> GrayLevel[b], ImageSize -> 500]],
{t, 0, .95, .05 }]
 
  1. chillypepperhothothot reblogged this from beesandbombs
  2. jeanderoche reblogged this from intothecontinuum
  3. linkistim reblogged this from intothecontinuum
  4. thunderclowder reblogged this from fuckyeahclementine
  5. fuckyeahclementine reblogged this from intothecontinuum
  6. helloevolutionus reblogged this from intothecontinuum
  7. eidolonboy reblogged this from biggermanbulge
  8. biggermanbulge reblogged this from intothecontinuum
  9. freethinkingart reblogged this from intothecontinuum
  10. fold-a-ble reblogged this from intothecontinuum
  11. quarkysouls reblogged this from intothecontinuum
  12. somewhereinaburstofglory reblogged this from beesandbombs
  13. giraffevomit reblogged this from intothecontinuum
  14. yovitam reblogged this from intothecontinuum
  15. psilocyben3 reblogged this from inexorableprocession
  16. enlightenedme56 reblogged this from intothecontinuum
  17. ucmyqef8rxbz6xujiqgpzr9xb reblogged this from intothecontinuum
  18. zeroclyy reblogged this from intothecontinuum and added:
    learning
  19. hanajiru reblogged this from beesandbombs
  20. iamtheseashellgirl reblogged this from beesandbombs
  21. bardinacage reblogged this from intothecontinuum
  22. maliferous-me reblogged this from intothecontinuum
  23. root-for-the-underdogs reblogged this from intothecontinuum
  24. nihiski reblogged this from intothecontinuum
  25. libster160 reblogged this from intothecontinuum and added:
    Inspired by Visual illusions based on single-field contrast asynchronies and by beesandbombs.