Inspired by Visual illusions based on single-field contrast asynchronies and by beesandbombs.
Mathematica code:
v[a_] :=  {{Cos[a], 0},  {0, Sin[a]},  {Sin[a], Cos[a] + Sin[a]},  {0, 2 Cos[a] + Sin[a]},  {Cos[a], 2 Cos[a] + 2 Sin[a]},  {Cos[a] + Sin[a], Cos[a] + 2 Sin[a]},  {Cos[a] + 2 Sin[a], 2 Cos[a] + 2 Sin[a]},  {2 Cos[a] + 2 Sin[a], 2 Cos[a] + Sin[a]},  {2 Cos[a] + Sin[a], Cos[a] + Sin[a]},  {2 Cos[a] + 2 Sin[a], Sin[a]},  {Cos[a] + 2 Sin[a], 0},  {Cos[a] + Sin[a], Cos[a]}}q[a_, b_, f_, w0_, w1_, w2_, w3_, t_] := {{GrayLevel[b + f*Sin[2 Pi (w0 + t)]],    Polygon[{v[a][[12]], v[a][[1]], v[a][[2]], v[a][[3]]}]},  {GrayLevel[b - f*Sin[2 Pi (w1 + t)]],    Polygon[{v[a][[3]], v[a][[4]], v[a][[5]], v[a][[6]]}]},  {GrayLevel[b - f*Sin[2 Pi (w2 + t)]],    Polygon[{v[a][[9]], v[a][[10]], v[a][[11]], v[a][[12]]}]},  {GrayLevel[b + f*Sin[2 Pi (w3 + t)]],    Polygon[{v[a][[6]], v[a][[7]], v[a][[8]], v[a][[9]]}]},  {Thick, GrayLevel[b + f], Line[{v[a][[1]], v[a][[2]], v[a][[3]]}]},  {Thick, GrayLevel[b - f], Line[{v[a][[3]], v[a][[12]], v[a][[1]]}]},  {Thick, GrayLevel[b - f], Line[{v[a][[3]], v[a][[4]], v[a][[5]]}]},  {Thick, GrayLevel[b + f], Line[{v[a][[5]], v[a][[6]], v[a][[3]]}]},  {Thick, GrayLevel[b + f], Line[{v[a][[11]], v[a][[12]], v[a][[9]]}]},  {Thick, GrayLevel[b - f], Line[{v[a][[9]], v[a][[10]], v[a][[11]]}]},  {Thick, GrayLevel[b - f], Line[{v[a][[9]], v[a][[6]], v[a][[7]]}]},  {Thick, GrayLevel[b + f], Line[{v[a][[9]], v[a][[8]], v[a][[7]]}]}}Manipulate[ With[{pr = 6, h = 2, v = 3, b = .8, f = .2, w0 = 0, w1 = 1/8, w2 = 2/8, w3 = 3/8, a = .9},  Graphics[   Table[    Translate[     Table[      Translate[       q[a, b, f, w0 + x/4 + y/4, w1 + x/4 + y/4, w2 + x/4 + y/4, w3 + x/4 + y/4, t],       y {0, Sin[a] + 2 Cos[a] + Sin[a]}],      {y, -v - 1, v, 1}],     x {2 Cos[a] + 2 Sin[a], 0}],    {x, -h - 1, h, 1}], PlotRange -> {{-pr, pr}, {-7/5 pr, 7/5 pr}}, Background -> GrayLevel[b], ImageSize -> 500]], {t, 0, .95, .05 }]

Inspired by Visual illusions based on single-field contrast asynchronies and by beesandbombs.

Mathematica code:


v[a_] :=
{{Cos[a], 0},
{0, Sin[a]},
{Sin[a], Cos[a] + Sin[a]},
{0, 2 Cos[a] + Sin[a]},
{Cos[a], 2 Cos[a] + 2 Sin[a]},
{Cos[a] + Sin[a], Cos[a] + 2 Sin[a]},
{Cos[a] + 2 Sin[a], 2 Cos[a] + 2 Sin[a]},
{2 Cos[a] + 2 Sin[a], 2 Cos[a] + Sin[a]},
{2 Cos[a] + Sin[a], Cos[a] + Sin[a]},
{2 Cos[a] + 2 Sin[a], Sin[a]},
{Cos[a] + 2 Sin[a], 0},
{Cos[a] + Sin[a], Cos[a]}}

q[a_, b_, f_, w0_, w1_, w2_, w3_, t_] :=
{{GrayLevel[b + f*Sin[2 Pi (w0 + t)]],
Polygon[{v[a][[12]], v[a][[1]], v[a][[2]], v[a][[3]]}]},
{GrayLevel[b - f*Sin[2 Pi (w1 + t)]],
Polygon[{v[a][[3]], v[a][[4]], v[a][[5]], v[a][[6]]}]},
{GrayLevel[b - f*Sin[2 Pi (w2 + t)]],
Polygon[{v[a][[9]], v[a][[10]], v[a][[11]], v[a][[12]]}]},
{GrayLevel[b + f*Sin[2 Pi (w3 + t)]],
Polygon[{v[a][[6]], v[a][[7]], v[a][[8]], v[a][[9]]}]},
{Thick, GrayLevel[b + f], Line[{v[a][[1]], v[a][[2]], v[a][[3]]}]},
{Thick, GrayLevel[b - f], Line[{v[a][[3]], v[a][[12]], v[a][[1]]}]},
{Thick, GrayLevel[b - f], Line[{v[a][[3]], v[a][[4]], v[a][[5]]}]},
{Thick, GrayLevel[b + f], Line[{v[a][[5]], v[a][[6]], v[a][[3]]}]},
{Thick, GrayLevel[b + f], Line[{v[a][[11]], v[a][[12]], v[a][[9]]}]},
{Thick, GrayLevel[b - f], Line[{v[a][[9]], v[a][[10]], v[a][[11]]}]},
{Thick, GrayLevel[b - f], Line[{v[a][[9]], v[a][[6]], v[a][[7]]}]},
{Thick, GrayLevel[b + f], Line[{v[a][[9]], v[a][[8]], v[a][[7]]}]}}

Manipulate[
With[{pr = 6, h = 2, v = 3, b = .8, f = .2, w0 = 0, w1 = 1/8, w2 = 2/8, w3 = 3/8, a = .9},
Graphics[
Table[
Translate[
Table[
Translate[
q[a, b, f, w0 + x/4 + y/4, w1 + x/4 + y/4, w2 + x/4 + y/4, w3 + x/4 + y/4, t],
y {0, Sin[a] + 2 Cos[a] + Sin[a]}],
{y, -v - 1, v, 1}],
x {2 Cos[a] + 2 Sin[a], 0}],
{x, -h - 1, h, 1}],
PlotRange -> {{-pr, pr}, {-7/5 pr, 7/5 pr}}, Background -> GrayLevel[b], ImageSize -> 500]],
{t, 0, .95, .05 }]
 
  1. somewhereinaburstofglory reblogged this from beesandbombs
  2. giraffevomit reblogged this from intothecontinuum
  3. yovitam reblogged this from intothecontinuum
  4. psilocyben3 reblogged this from inexorableprocession
  5. enlightenedme123 reblogged this from intothecontinuum
  6. fozzy-a reblogged this from intothecontinuum
  7. zeroclyy reblogged this from intothecontinuum and added:
    learning
  8. hanajiru reblogged this from beesandbombs
  9. iamtheseashellgirl reblogged this from beesandbombs
  10. kegelhugz reblogged this from intothecontinuum
  11. bardinacage reblogged this from intothecontinuum
  12. maliferous-me reblogged this from intothecontinuum
  13. root-for-the-underdogs reblogged this from intothecontinuum
  14. nihiski reblogged this from intothecontinuum
  15. libster160 reblogged this from intothecontinuum and added:
    Inspired by Visual illusions based on single-field contrast asynchronies and by beesandbombs.
  16. vonripper reblogged this from intothecontinuum
  17. nemesisland reblogged this from intothecontinuum
  18. inexorableprocession reblogged this from intothecontinuum
  19. lafollereveuse reblogged this from aazure
  20. boobsboobsboobs12 reblogged this from aazure
  21. leshauntedsouls reblogged this from aazure
  22. aazure reblogged this from disgustingpervert
  23. backgrounds-myownprison666 reblogged this from pegala
  24. callmeklimt reblogged this from red-lipstick
  25. jimmynewland reblogged this from intothecontinuum
  26. quasui reblogged this from intothecontinuum