log-polar transforms

shown with increasing wave amplitude from top to bottom

Mathematica code:

WfPlot[ s_, t_] :=
Graphics[
Table[
{AbsoluteThickness[1.5],
Line[
Table[
{i + If[Mod[i, 2] == 0, s*Sin[j*2 Pi/66 + i*2 Pi/6 + t], 0],
(-1)^i*.5 + .4*j},
 {i, 1, 19}]]},
{j, 1, 69, 1}],
PlotRange -> {{1, 19}, {.8, 27.2}},
ImageSize -> {500, 500}]

LogPolar[x_, y_] := {Log[Sqrt[x^2 + y^2]], ArcTan[x, y]}

Manipulate[
ImageTransformation[
WfPlot[s, t],
LogPolar[#[[1]], #[[2]]] &, DataRange -> {{-Pi, Pi}, {-Pi, Pi}}],
{s, 0, 1}, {t, 0, 2Pi}]
 
  1. thevertical360 reblogged this from intothecontinuum
  2. head-fuked reblogged this from intothecontinuum
  3. hypnoserve2001 reblogged this from hypnosexual
  4. dickpickmanity reblogged this from hypnosexual
  5. hypnosexual reblogged this from krovikanio
  6. krovikanio reblogged this from hypnoticswitch
  7. hypnoticswitch reblogged this from intothecontinuum
  8. technically-tony reblogged this from intothecontinuum
  9. lorenagarufi12 reblogged this from thesilverspiral
  10. thesilverspiral reblogged this from intothecontinuum
  11. experiencinghumanity reblogged this from intothecontinuum
  12. shoy reblogged this from intothecontinuum
  13. southernrebelgirl reblogged this from intothecontinuum and added:
    log-polar transforms shown with increasing wave amplitude from top to bottom Mathematica code: WfPlot[ s_, t_] :=...
  14. addictedtosymmetry reblogged this from intothecontinuum
  15. joanawithonen reblogged this from intothecontinuum and added:
    This makes my brain fizz.
  16. rimrider reblogged this from intothecontinuum
  17. cottoncandytommotheninja reblogged this from intothecontinuum
  18. lonelyheartsdeathmetal reblogged this from intothecontinuum
  19. elfboi reblogged this from bwansen
  20. brightsideofyou reblogged this from intothecontinuum and added:
    intothecontinuum
  21. bwansen reblogged this from enki2
  22. enki2 reblogged this from intothecontinuum