Some more inspiration from Bridget Riley — think Blaze 1 (1962).
The first image is what you get after transforming the second image into log-polar coordinates.

Mathematica code:

WfPlot[  t_ ] :=
Graphics[
Table[
{AbsoluteThickness[3],
Line[
Table[
{i + If[Mod[i, 2] == 0, .5*Sin[j*2 Pi/66 + t], 0],
(-1)^i*.5 + .4*j},
 {i, 1, 19}]]},
{j, 1, 69, 1}],
PlotRange -> {{1, 19}, {.8, 27.2}},
ImageSize -> {500, 500}]


Manipulate[
WfPlot[ t ],
{t, 0, 2Pi}]

LogPolar[x_, y_] := {Log[Sqrt[x^2 + y^2]], ArcTan[x, y]}

Manipulate[
ImageTransformtion[
WfPlot[ t ],
LogPolar[#[[1]], #[[2]]] &, DataRange -> {{-Pi, Pi}, {-Pi, Pi}}],
{t,0,2Pi}]
 
  1. escapingtodesolationrow reblogged this from intothecontinuum
  2. posha10 reblogged this from intothecontinuum
  3. sprintingbackwards reblogged this from intothecontinuum
  4. 13thrune reblogged this from intothecontinuum
  5. hypnoserve2001 reblogged this from hypnosexual
  6. dickpickmanity reblogged this from hypnosexual
  7. hypnosexual reblogged this from krovikanio
  8. krovikanio reblogged this from hypnoticswitch
  9. hypnoticswitch reblogged this from intothecontinuum
  10. jack-box reblogged this from intothecontinuum
  11. jorchbot reblogged this from intothecontinuum
  12. ledningen reblogged this from intothecontinuum
  13. senefra reblogged this from intothecontinuum
  14. mdme-x reblogged this from intothecontinuum
  15. addictedtosymmetry reblogged this from intothecontinuum
  16. guidewire reblogged this from intothecontinuum
  17. elfboi reblogged this from bwansen
  18. bwansen reblogged this from enki2
  19. sathornunique reblogged this from enki2
  20. enki2 reblogged this from intothecontinuum
  21. quotefrommanstabbed reblogged this from intothecontinuum
  22. maruo003 reblogged this from yuruyurau
  23. yuruyurau reblogged this from intothecontinuum