Mathematica code:Rot80 =  Table[  Table[   RotationTransform[a, {1, 1, 0}, {0, 0, 0}][Tuples[{-1, 1}, 3][[v]]],  {v, 1, 8, 1}],{a, 0, 2 Pi,  Pi/80}]Edge := {1, 2, 4, 3, 7, 8, 6, 5, 1, 3, 4, 8, 7, 5, 6, 2}CubeTrail[h_, op_, N_, s_, r_, z_, t_, PR_, IS_, C_] := Graphics[  Table[   Scale[    Translate[     {AbsoluteThickness[h], Opacity[op],       If[C == 1, Black, White],      Line[       Table[        {Rot80[[1 + Mod[t, 80]]][[Edge[[e]]]][[1]],         Rot80[[1 + Mod[t, 80]]][[Edge[[e]]]][[2]]},        {e, 1, 16, 1}]]},     r{Cos[2 Pi*(n*t/80 + k)/N], Sin[2 Pi*(n*t/80 + k)/N]}],    z^n, r{Cos[2 Pi*(n*t/80 + k)/N], Sin[2 Pi*(n*t/80 + k)/N]}],   {k, 1, N, 1},   {n, 1, s, 1}],  PlotRange -> PR, ImageSize -> 500,   Background -> If[C == 0, Black, White]]Manipulate[P = {h, op, N, s, r, z, t, PR, IS, C}; CubeTrail[h, op, N, s, r, z, t, PR, 500, 0],{{h, 1}, 0, 20}, {op, 1, 0}, {{N, 4}, 1, 16, 1}, {s, 1, 100, 1}, {{r, 3.5}, 0, 10}, {z, 1, 0},{{PR, 5}, 1, 5}, {C, 0, 1, 1},{t, 0, 100, 1}]P ={1.5, 1, 4, 8, 3.8, 0.75, 0, 5, 500, 0}Manipulate[CubeTrail[P[[1]],P[[2]],P[[3]],P[[4]],P[[5]],P[[6]],t,P[[8]],500,0],{t, 1, 80, 1}]

Mathematica
code:
Rot80 = 
Table[
Table[
RotationTransform[a, {1, 1, 0}, {0, 0, 0}][Tuples[{-1, 1}, 3][[v]]],
{v, 1, 8, 1}],
{a, 0, 2 Pi, Pi/80}]

Edge := {1, 2, 4, 3, 7, 8, 6, 5, 1, 3, 4, 8, 7, 5, 6, 2}

CubeTrail[h_, op_, N_, s_, r_, z_, t_, PR_, IS_, C_] :=
Graphics[
Table[
Scale[
Translate[
{AbsoluteThickness[h], Opacity[op],
If[C == 1, Black, White],
Line[
Table[
{Rot80[[1 + Mod[t, 80]]][[Edge[[e]]]][[1]],
Rot80[[1 + Mod[t, 80]]][[Edge[[e]]]][[2]]},
{e, 1, 16, 1}]]},
r{Cos[2 Pi*(n*t/80 + k)/N], Sin[2 Pi*(n*t/80 + k)/N]}],
z^n, r{Cos[2 Pi*(n*t/80 + k)/N], Sin[2 Pi*(n*t/80 + k)/N]}],
{k, 1, N, 1},
{n, 1, s, 1}],
PlotRange -> PR, ImageSize -> 500,
Background -> If[C == 0, Black, White]]

Manipulate[P = {h, op, N, s, r, z, t, PR, IS, C};
CubeTrail[h, op, N, s, r, z, t, PR, 500, 0],
{{h, 1}, 0, 20}, {op, 1, 0},
{{N, 4}, 1, 16, 1}, {s, 1, 100, 1},
{{r, 3.5}, 0, 10}, {z, 1, 0},
{{PR, 5}, 1, 5}, {C, 0, 1, 1},
{t, 0, 100, 1}]

P ={1.5, 1, 4, 8, 3.8, 0.75, 0, 5, 500, 0}

Manipulate[
CubeTrail[P[[1]],P[[2]],P[[3]],P[[4]],P[[5]],P[[6]],t,P[[8]],500,0],
{t, 1, 80, 1}]
 
  1. imaken reblogged this from strangerxxx
  2. syanos reblogged this from strangerxxx
  3. meiiti reblogged this from foooomio
  4. ltzz reblogged this from strangerxxx
  5. tqurrui reblogged this from strangerxxx
  6. strangerxxx reblogged this from foooomio
  7. foooomio reblogged this from syunzero
  8. syunzero reblogged this from yt-siden
  9. fall-out-cam reblogged this from the-tab-lab
  10. msmrcc reblogged this from cehdomenici
  11. ifallforprettycelebss reblogged this from thefaberryshipper
  12. the-girl-who-speaks-her-mind reblogged this from thefaberryshipper
  13. thefaberryshipper reblogged this from pilosopogyno
  14. openstateofmiind reblogged this from stumblinguponepiphanies
  15. milky-wavves reblogged this from were-faux-real
  16. mylovelyfriendana reblogged this from im-no-loss-to-the-world
  17. highbows reblogged this from were-faux-real
  18. the-purple-world reblogged this from were-faux-real
  19. tessamclaughlin reblogged this from were-faux-real
  20. im-no-loss-to-the-world reblogged this from were-faux-real
  21. lnsyndrome reblogged this from were-faux-real
  22. i-mp0sible reblogged this from were-faux-real
  23. drenched-in-melancholy reblogged this from were-faux-real
  24. were-faux-real reblogged this from feelthedrip
  25. goawaybruh reblogged this from billycrystals
  26. pnwcudi reblogged this from the-tab-lab
  27. the-tab-lab reblogged this from feelthedrip
  28. feelthedrip reblogged this from billycrystals
  29. billycrystals reblogged this from youfuckingfucks
  30. jacksshinythings reblogged this from jacksmenn and added:
    intothecontinuum
  31. cosmospie reblogged this from spring-of-mathematics
  32. spring-of-mathematics reblogged this from intothecontinuum
  33. clazzjassicalrockhop reblogged this from intothecontinuum
  34. ignitethespace reblogged this from thepuzzled62