Mathematica code:Rot80 =  Table[  Table[   RotationTransform[a, {1, 1, 0}, {0, 0, 0}][Tuples[{-1, 1}, 3][[v]]],  {v, 1, 8, 1}],{a, 0, 2 Pi,  Pi/80}]Edge := {1, 2, 4, 3, 7, 8, 6, 5, 1, 3, 4, 8, 7, 5, 6, 2}CubeTrail[h_, op_, N_, s_, r_, z_, t_, PR_, IS_, C_] := Graphics[  Table[   Scale[    Translate[     {AbsoluteThickness[h], Opacity[op],       If[C == 1, Black, White],      Line[       Table[        {Rot80[[1 + Mod[t, 80]]][[Edge[[e]]]][[1]],         Rot80[[1 + Mod[t, 80]]][[Edge[[e]]]][[2]]},        {e, 1, 16, 1}]]},     r{Cos[2 Pi*(n*t/80 + k)/N], Sin[2 Pi*(n*t/80 + k)/N]}],    z^n, r{Cos[2 Pi*(n*t/80 + k)/N], Sin[2 Pi*(n*t/80 + k)/N]}],   {k, 1, N, 1},   {n, 1, s, 1}],  PlotRange -> PR, ImageSize -> 500,   Background -> If[C == 0, Black, White]]Manipulate[P = {h, op, N, s, r, z, t, PR, IS, C}; CubeTrail[h, op, N, s, r, z, t, PR, 500, 0],{{h, 1}, 0, 20}, {op, 1, 0}, {{N, 4}, 1, 16, 1}, {s, 1, 100, 1}, {{r, 3.5}, 0, 10}, {z, 1, 0},{{PR, 5}, 1, 5}, {C, 0, 1, 1},{t, 0, 100, 1}]P ={1.5, 1, 4, 8, 3.8, 0.75, 0, 5, 500, 0}Manipulate[CubeTrail[P[[1]],P[[2]],P[[3]],P[[4]],P[[5]],P[[6]],t,P[[8]],500,0],{t, 1, 80, 1}]

Mathematica
code:
Rot80 = 
Table[
Table[
RotationTransform[a, {1, 1, 0}, {0, 0, 0}][Tuples[{-1, 1}, 3][[v]]],
{v, 1, 8, 1}],
{a, 0, 2 Pi, Pi/80}]

Edge := {1, 2, 4, 3, 7, 8, 6, 5, 1, 3, 4, 8, 7, 5, 6, 2}

CubeTrail[h_, op_, N_, s_, r_, z_, t_, PR_, IS_, C_] :=
Graphics[
Table[
Scale[
Translate[
{AbsoluteThickness[h], Opacity[op],
If[C == 1, Black, White],
Line[
Table[
{Rot80[[1 + Mod[t, 80]]][[Edge[[e]]]][[1]],
Rot80[[1 + Mod[t, 80]]][[Edge[[e]]]][[2]]},
{e, 1, 16, 1}]]},
r{Cos[2 Pi*(n*t/80 + k)/N], Sin[2 Pi*(n*t/80 + k)/N]}],
z^n, r{Cos[2 Pi*(n*t/80 + k)/N], Sin[2 Pi*(n*t/80 + k)/N]}],
{k, 1, N, 1},
{n, 1, s, 1}],
PlotRange -> PR, ImageSize -> 500,
Background -> If[C == 0, Black, White]]

Manipulate[P = {h, op, N, s, r, z, t, PR, IS, C};
CubeTrail[h, op, N, s, r, z, t, PR, 500, 0],
{{h, 1}, 0, 20}, {op, 1, 0},
{{N, 4}, 1, 16, 1}, {s, 1, 100, 1},
{{r, 3.5}, 0, 10}, {z, 1, 0},
{{PR, 5}, 1, 5}, {C, 0, 1, 1},
{t, 0, 100, 1}]

P ={1.5, 1, 4, 8, 3.8, 0.75, 0, 5, 500, 0}

Manipulate[
CubeTrail[P[[1]],P[[2]],P[[3]],P[[4]],P[[5]],P[[6]],t,P[[8]],500,0],
{t, 1, 80, 1}]
 
  1. cameroonieandcheese reblogged this from intrepidstranger
  2. demonputty reblogged this from spring-of-mathematics
  3. psycedelicate reblogged this from pollutive
  4. pollutive reblogged this from toyte
  5. humansarealiens reblogged this from toyte
  6. lndshrk reblogged this from toyte
  7. toyte reblogged this from vvampirevveeknd
  8. dreamofthemoon reblogged this from behindthelenzes
  9. melina-bea reblogged this from intothecontinuum
  10. the-promised-wlan reblogged this from andrewkellogg
  11. malprocrastination reblogged this from darth-vader
  12. theonlyshawnde reblogged this from pen-island
  13. pen-island reblogged this from darth-vader
  14. adorkablenymph reblogged this from darth-vader
  15. fistiecuffs reblogged this from darth-vader
  16. darth-vader reblogged this from intothecontinuum
  17. looksomeonefinally reblogged this from intothecontinuum
  18. radiolalou reblogged this from adidhash
  19. adidhash reblogged this from intothecontinuum
  20. crystarls reblogged this from klub-kiss
  21. maaaddison reblogged this from carriepoppins
  22. carriepoppins reblogged this from klub-kiss
  23. naivesmiles reblogged this from klub-kiss
  24. klub-kiss reblogged this from mistysea
  25. bubbaganjalion reblogged this from witchhousepoland
  26. mayorhoney reblogged this from gnorcs and added:
    @_@
  27. tgv83 reblogged this from intothecontinuum
  28. sicl9 reblogged this from intothecontinuum
  29. jeanderoche reblogged this from intothecontinuum
  30. sirsuffix reblogged this from brittonius
  31. brittonius reblogged this from intothecontinuum
  32. diariodebordoblog reblogged this from saudades-a-mil