Mathematica code:
RotAxis = Table[Table[  Table[    R[o, {.01 + x, .01 + y, 0}, {0, 0, 0}],    {o, 0, 2 Pi, 2 Pi/80}], {x, -10, 10, 1}], {y, -10, 10, 1}]Edge := {1, 2, 4, 3, 7, 8, 6, 5, 1, 3, 4, 8, 7, 5, 6, 2}CubeProjections[color_, pr_, b_, s_, h_, w_, m_, o_] :=Graphics[ Table[  Translate[   {AbsoluteThickness[h], If[color == 0, Black, White],    Line[     Table[      Table[      RotAxis[[11 + y]][[11 + x]]      [[1 + Mod[Round[ (Pi + ArcTan[.01 + x, .01 + y])/2Pi] + o, 80]]]      [[Edge[[k]]]][[c]],       {c, 1, 2, 1}],      {k, 1, 16, 1}]]},   {s*x, s*y}],  {x, -b, b, 1}, {y, -b, b, 1}], PlotRange -> {{-pr, pr}, {-pr, pr}}, ImageSize -> 500,  Background -> If[color == 0, White, Black] ]Manipulate[PM = {color, pr, b, s, h, w, m, a};CubeProjections[color, pr, b, s, h, w, m, a],{color, 0, 1, 1}, {{pr, 17}, 1, 52}, {{b, 5}, 1, 10, 1},{{s, 3}, 0, 5}, {{h, 1}, .01, 10},{{w, 1}, 0, 20, 1},{{m, 1}, 0, 20, 1},{a, 1, 80, 1}]P = {0, 20, 5, 3.6, 1.5, 1, 1, 1}Manipulate[CubeProjections[P[[1]],P[[2]],P[[3]],P[[4]],P[[5]],P[[6]],P[[7]],a],{a, 1, 79, 2}]

Mathematica code:

RotAxis =
 Table[Table[
Table[
R[o, {.01 + x, .01 + y, 0}, {0, 0, 0}],
{o, 0, 2 Pi, 2 Pi/80}],
 {x, -10, 10, 1}], {y, -10, 10, 1}]

Edge := {1, 2, 4, 3, 7, 8, 6, 5, 1, 3, 4, 8, 7, 5, 6, 2}

CubeProjections[color_, pr_, b_, s_, h_, w_, m_, o_] :=
Graphics[
Table[
Translate[
{AbsoluteThickness[h], If[color == 0, Black, White],
Line[
Table[
Table[
RotAxis[[11 + y]][[11 + x]]
[[1 + Mod[Round[ (Pi + ArcTan[.01 + x, .01 + y])/2Pi] + o, 80]]]
[[Edge[[k]]]][[c]],
{c, 1, 2, 1}],
{k, 1, 16, 1}]]},
{s*x, s*y}],
{x, -b, b, 1}, {y, -b, b, 1}],
PlotRange -> {{-pr, pr}, {-pr, pr}}, ImageSize -> 500,
Background -> If[color == 0, White, Black]
]

Manipulate[
PM = {color, pr, b, s, h, w, m, a};
CubeProjections[color, pr, b, s, h, w, m, a],
{color, 0, 1, 1}, {{pr, 17}, 1, 52}, {{b, 5}, 1, 10, 1},
{{s, 3}, 0, 5}, {{h, 1}, .01, 10},
{{w, 1}, 0, 20, 1},{{m, 1}, 0, 20, 1},
{a, 1, 80, 1}]

P = {0, 20, 5, 3.6, 1.5, 1, 1, 1}

Manipulate[
CubeProjections[P[[1]],P[[2]],P[[3]],P[[4]],P[[5]],P[[6]],P[[7]],a],
{a, 1, 79, 2}]
 
  1. supercalifragilisticgirl reblogged this from atrociousminds
  2. atrociousminds reblogged this from basilarfuse
  3. basilarfuse reblogged this from yesyesyoo
  4. trippyhypnoticgifs reblogged this from intothecontinuum
  5. mtthw-brwn reblogged this from intothecontinuum
  6. great-ape-see reblogged this from intothecontinuum and added:
    Mathematica code: RotAxis = Table[Table[ Table[ R[o, {.01 + x, .01 + y, 0}, {0, 0, 0}], {o, 0, 2 Pi, 2 Pi/80}], {x, -10,...
  7. billycrystals reblogged this from goawaybruh
  8. goawaybruh reblogged this from billycrystals
  9. officialwoolworths reblogged this from juste-une-question-damour
  10. juste-une-question-damour reblogged this from measurementoftheobserver
  11. measurementoftheobserver reblogged this from visualizingmath
  12. tinymagics reblogged this from intothecontinuum
  13. megpagemelpomene reblogged this from intothecontinuum and added:
    Still new to Mathematica, but I hope someday I’ll be able to make beautiful things like this.
  14. ss-ng reblogged this from visualizingmath
  15. mittenfister reblogged this from guccidaddy29
  16. thereseflorian reblogged this from visualizingmath
  17. yesyesyoo reblogged this from visualizingmath
  18. embracethecreepy reblogged this from visualizingmath
  19. similarfruit reblogged this from visualizingmath
  20. mylifeisborromean reblogged this from visualizingmath
  21. teoterrago reblogged this from existinfreedom
  22. perpetual---motion reblogged this from existinfreedom
  23. existinfreedom reblogged this from theskunkcatcher
  24. brittonius reblogged this from visualizingmath
  25. undercoverhouseplants reblogged this from visualizingmath
  26. our-bluish-peacebone reblogged this from wanderdesire
  27. ambiguo12 reblogged this from blue-tang-clan
  28. onetime-around reblogged this from freezingbones