2-D projections of rotating cubes
Mathematica code:
Rot =  Table[  Table[   RotationTransform[a, {1, 1, 0}, {0, 0, 0}][Tuples[{-1, 1}, 3][[v]]],  {v, 1, 8, 1}],{a, 0, 2 Pi, 2 Pi/100}]Edge := {1, 2, 4, 3, 7, 8, 6, 5, 1, 3, 4, 8, 7, 5, 6, 2}CubeProjections[color_, pr_, b_, s_, h_, w_, m_, o_] :=Graphics[ Table[  Translate[   {AbsoluteThickness[h], If[color == 0, Black, White],    Line[     Table[      Table[       Rot[[1 + Mod[w (y + m*x) + a, 100]]][[Edge[[k]]]][[c]],       {c, 1, 2, 1}],      {k, 1, 16, 1}]]},   {s*x, s*y}],  {x, -b, b, 1}, {y, -b, b, 1}], PlotRange -> {{-pr, pr}, {-pr, pr}}, ImageSize -> 500,  Background -> If[color == 0, White, Black] ]Manipulate[PM = {color, pr, b, s, h, w, m, a};CubeProjections[color, pr, b, s, h, w, m, a],{color, 0, 1, 1}, {{pr, 17}, 1, 52}, {{b, 5}, 1, 10, 1},{{s, 3}, 0, 5}, {{h, 1}, .01, 10},{{w, 1}, 0, 20, 1},{{m, 1}, 0, 20, 1},{a, 1, 100, 1}]P = {0, 26.7, 7, 3.5, 1.3, 5, 1, 0}Manipulate[CubeProjections[P[[1]],P[[2]],P[[3]],P[[4]],P[[5]],P[[6]],P[[7]],a],{a, 48, 0, -2}]


2-D projections of rotating cubes

Mathematica code:

Rot = 
Table[
Table[
RotationTransform[a, {1, 1, 0}, {0, 0, 0}][Tuples[{-1, 1}, 3][[v]]],
{v, 1, 8, 1}],
{a, 0, 2 Pi, 2 Pi/100}]

Edge := {1, 2, 4, 3, 7, 8, 6, 5, 1, 3, 4, 8, 7, 5, 6, 2}

CubeProjections[color_, pr_, b_, s_, h_, w_, m_, o_] :=
Graphics[
Table[
Translate[
{AbsoluteThickness[h], If[color == 0, Black, White],
Line[
Table[
Table[
Rot[[1 + Mod[w (y + m*x) + a, 100]]][[Edge[[k]]]][[c]],
{c, 1, 2, 1}],
{k, 1, 16, 1}]]},
{s*x, s*y}],
{x, -b, b, 1}, {y, -b, b, 1}],
PlotRange -> {{-pr, pr}, {-pr, pr}}, ImageSize -> 500,
Background -> If[color == 0, White, Black]
]

Manipulate[
PM = {color, pr, b, s, h, w, m, a};
CubeProjections[color, pr, b, s, h, w, m, a],
{color, 0, 1, 1}, {{pr, 17}, 1, 52}, {{b, 5}, 1, 10, 1},
{{s, 3}, 0, 5}, {{h, 1}, .01, 10},
{{w, 1}, 0, 20, 1},{{m, 1}, 0, 20, 1},
{a, 1, 100, 1}]

P = {0, 26.7, 7, 3.5, 1.3, 5, 1, 0}

Manipulate[
CubeProjections[P[[1]],P[[2]],P[[3]],P[[4]],P[[5]],P[[6]],P[[7]],a],
{a, 48, 0, -2}]
 
  1. chestercheeta reblogged this from spring-of-mathematics
  2. dmoonballoon reblogged this from intothecontinuum
  3. vomity-flower reblogged this from 2113853
  4. 2113853 reblogged this from separate-integrate
  5. adidhash reblogged this from milkpunks
  6. waddlingaround reblogged this from whiteandwong
  7. whiteandwong reblogged this from ablondemathematician
  8. andrewsellerslikepetersellers reblogged this from o-leaozinho and added:
    Ooooh
  9. o-leaozinho reblogged this from russiawithoutputin
  10. jeanderoche reblogged this from intothecontinuum
  11. amorfatixx reblogged this from acid--lillac
  12. in-rear reblogged this from 000101001
  13. loveless-yourself reblogged this from meresso-sa-gente
  14. cryptine reblogged this from bearly-human
  15. awkwardchouchou reblogged this from myskyscraper
  16. ekth reblogged this from spring-of-mathematics
  17. kwintuhn reblogged this from spring-of-mathematics
  18. digletteer reblogged this from teejayguanabana
  19. elaborando reblogged this from spring-of-mathematics
  20. dickachino reblogged this from spring-of-mathematics
  21. dustinryuk reblogged this from deiparous
  22. stayedupreallylate reblogged this from emmavemmalemonade
  23. my-colorless-blog reblogged this from in-v-ain
  24. whyloxx reblogged this from child-of-the-universe
  25. funwithjason reblogged this from aeyri
  26. aeyri reblogged this from yesterday-bromance
  27. kotikii reblogged this from russiawithoutputin
  28. saturnidies reblogged this from yesterday-bromance