2-D projections of rotating cubes
Mathematica code:
Rot =  Table[  Table[   RotationTransform[a, {1, 1, 0}, {0, 0, 0}][Tuples[{-1, 1}, 3][[v]]],  {v, 1, 8, 1}],{a, 0, 2 Pi, 2 Pi/100}]Edge := {1, 2, 4, 3, 7, 8, 6, 5, 1, 3, 4, 8, 7, 5, 6, 2}CubeProjections[color_, pr_, b_, s_, h_, w_, m_, o_] :=Graphics[ Table[  Translate[   {AbsoluteThickness[h], If[color == 0, Black, White],    Line[     Table[      Table[       Rot[[1 + Mod[w (y + m*x) + a, 100]]][[Edge[[k]]]][[c]],       {c, 1, 2, 1}],      {k, 1, 16, 1}]]},   {s*x, s*y}],  {x, -b, b, 1}, {y, -b, b, 1}], PlotRange -> {{-pr, pr}, {-pr, pr}}, ImageSize -> 500,  Background -> If[color == 0, White, Black] ]Manipulate[PM = {color, pr, b, s, h, w, m, a};CubeProjections[color, pr, b, s, h, w, m, a],{color, 0, 1, 1}, {{pr, 17}, 1, 52}, {{b, 5}, 1, 10, 1},{{s, 3}, 0, 5}, {{h, 1}, .01, 10},{{w, 1}, 0, 20, 1},{{m, 1}, 0, 20, 1},{a, 1, 100, 1}]P = {0, 26.7, 7, 3.5, 1.3, 5, 1, 0}Manipulate[CubeProjections[P[[1]],P[[2]],P[[3]],P[[4]],P[[5]],P[[6]],P[[7]],a],{a, 48, 0, -2}]


2-D projections of rotating cubes

Mathematica code:

Rot = 
Table[
Table[
RotationTransform[a, {1, 1, 0}, {0, 0, 0}][Tuples[{-1, 1}, 3][[v]]],
{v, 1, 8, 1}],
{a, 0, 2 Pi, 2 Pi/100}]

Edge := {1, 2, 4, 3, 7, 8, 6, 5, 1, 3, 4, 8, 7, 5, 6, 2}

CubeProjections[color_, pr_, b_, s_, h_, w_, m_, o_] :=
Graphics[
Table[
Translate[
{AbsoluteThickness[h], If[color == 0, Black, White],
Line[
Table[
Table[
Rot[[1 + Mod[w (y + m*x) + a, 100]]][[Edge[[k]]]][[c]],
{c, 1, 2, 1}],
{k, 1, 16, 1}]]},
{s*x, s*y}],
{x, -b, b, 1}, {y, -b, b, 1}],
PlotRange -> {{-pr, pr}, {-pr, pr}}, ImageSize -> 500,
Background -> If[color == 0, White, Black]
]

Manipulate[
PM = {color, pr, b, s, h, w, m, a};
CubeProjections[color, pr, b, s, h, w, m, a],
{color, 0, 1, 1}, {{pr, 17}, 1, 52}, {{b, 5}, 1, 10, 1},
{{s, 3}, 0, 5}, {{h, 1}, .01, 10},
{{w, 1}, 0, 20, 1},{{m, 1}, 0, 20, 1},
{a, 1, 100, 1}]

P = {0, 26.7, 7, 3.5, 1.3, 5, 1, 0}

Manipulate[
CubeProjections[P[[1]],P[[2]],P[[3]],P[[4]],P[[5]],P[[6]],P[[7]],a],
{a, 48, 0, -2}]
 
  1. highscho0l reblogged this from lamexf
  2. as-coda reblogged this from stupidinsect
  3. lamexf reblogged this from zah-zen
  4. omarpelaez reblogged this from zah-zen
  5. zah-zen reblogged this from kristallmarie
  6. lutro95 reblogged this from iwannabeyourgentleman
  7. kristallmarie reblogged this from coalmohr
  8. panfag reblogged this from iwannabeyourgentleman
  9. itsadventurethyme reblogged this from iwannabeyourgentleman
  10. aeonscott284 reblogged this from iwannabeyourgentleman
  11. iwannabeyourgentleman reblogged this from mat-the-double-u
  12. ecedentesiasst reblogged this from explanative
  13. lordcapulet420 reblogged this from 3dhusbando
  14. 3dhusbando reblogged this from sleepingaliens2015
  15. lounawemaere reblogged this from edouardew
  16. pepekotan-a reblogged this from diniasvale
  17. i-cant-believe-its-not-vinty reblogged this from weedjoke420
  18. triporetum reblogged this from spittyqueen
  19. lostboywonder reblogged this from peach94
  20. just-thought-id-say reblogged this from shakespeareinthecity
  21. shakespeareinthecity reblogged this from thirdworldmicrowave
  22. mnnkhjn reblogged this from insto
  23. glimpseofsunshine reblogged this from infinite--thoughts
  24. itsamaddlife reblogged this from infinite--thoughts
  25. infinite--thoughts reblogged this from sarcastics
  26. car0linewyrick reblogged this from thirdworldmicrowave
  27. britishtelecom reblogged this from mar7ia
  28. thirdworldmicrowave reblogged this from thirdworldmicrowave
  29. iliaccrests reblogged this from externaleffect
  30. externaleffect reblogged this from franticassing
  31. the-transit-so-far reblogged this from kissing-cobras
  32. theorchidorchard reblogged this from eo--z
  33. wreckingthatball reblogged this from poonnanas
  34. edouardew reblogged this from deiparous
  35. intellectualtheft reblogged this from imbeingsounoriginal
  36. imbeingsounoriginal reblogged this from adriftinthereverie
  37. yunglolita reblogged this from melondrink