Animated GIF (700x700)

Mathematica code:

RR[n_, m_] := (SeedRandom[n*m]; RandomReal[])L[t_, Q_, g_, i_] := Sum[ Exp[-(t - (RR[i, 5*Q] + j))^2/g], {j, {-1, 0, 1}}]G[c_, F_, P_, s_, o_, g_, A_, a_, w_, t_, r_, Q_, pr_, is_] := Graphics[  Table[   Table[    {RGBColor[RR[i, Q], RR[i, 2*Q], RR[i, 3*Q], o + A*L[t, 5*Q, g, i]],     Disk[      RotationTransform[(k + (-1)^(i*w)*t*a)*2 Pi/F]       [{r*RR[2 i, 4*Q], r*RR[2 i + 1, 4*Q]}], s*L[t, 5*Q, g, i]]},   {k, 0, F - 1, 1}],  {i, 1, P, 1}], PlotRange -> pr, ImageSize -> is,  Background -> If[c == 0, White, Black]]Table[ ListAnimate[  Table[   G[0, 17, 75, .1, 0, .1, .25, 1, 1, t, 1, Q, 1.6, 700]  {t, 0, 29/30, 1/30}], AnimationRunning -> False],{Q, 21, 24, 1}]
Filed under: #GIF  #Mathematica  #C17  #circles  #GCG

1. xgifs reblogged this from intothecontinuum
2. olduvaigorge reblogged this from intothecontinuum
3. cosmiclyssy reblogged this from dee-lirium
4. peake-a-boo reblogged this from dee-lirium
5. the-fuq reblogged this from dee-lirium
6. dee-lirium reblogged this from intothecontinuum
7. mtesehall reblogged this from intothecontinuum
8. giferronous reblogged this from intothecontinuum
9. mawakire reblogged this from intothecontinuum
10. napoleanbonerfart reblogged this from intothecontinuum
11. iliketolaughatrocks reblogged this from intothecontinuum
12. hackedy reblogged this from intothecontinuum
13. intothecontinuum posted this