Animated GIF (700x700)

Mathematica code:

RR[n_, m_] := (SeedRandom[n*m]; RandomReal[])L[t_, Q_, g_, i_] := Sum[ Exp[-(t - (RR[i, 5*Q] + j))^2/g], {j, {-1, 0, 1}}]G[c_, F_, P_, s_, o_, g_, A_, a_, w_, t_, r_, Q_, pr_, is_] := Graphics[  Table[   Table[    {RGBColor[RR[i, Q], RR[i, 2*Q], RR[i, 3*Q], o + A*L[t, 5*Q, g, i]],     Disk[      RotationTransform[(k + (-1)^(i*w)*t*a)*2 Pi/F]       [{r*RR[2 i, 4*Q], r*RR[2 i + 1, 4*Q]}], s*L[t, 5*Q, g, i]]},   {k, 0, F - 1, 1}],  {i, 1, P, 1}], PlotRange -> pr, ImageSize -> is,  Background -> If[c == 0, White, Black]]Table[ ListAnimate[  Table[   G[0, 12, 50, .2, 0, .1, .25, 1, 1, t, 1, Q, 1.6, 700],  {t, 0, 29/30, 1/30}], AnimationRunning -> False],{Q, {41, 72, 73, 76}}]
Filed under: #GIF  #Mathematica  #C12  #circles  #GCG

1. thepandanotes reblogged this from intothecontinuum
2. awesomesplendor reblogged this from geometryofdopeness
3. ovyvansulga reblogged this from dee-lirium
4. dee-lirium reblogged this from intothecontinuum
5. geometryofdopeness reblogged this from intothecontinuum
6. museeum reblogged this from intothecontinuum
7. giferronous reblogged this from intothecontinuum
8. smoot reblogged this from intothecontinuum
9. void1984 reblogged this from isometries
10. papercyborgs reblogged this from intothecontinuum
11. isometries reblogged this from intothecontinuum
12. buddhartha reblogged this from intothecontinuum
13. victorgarcia19 reblogged this from intothecontinuum
14. shakespearmints reblogged this from intothecontinuum
15. halfknots reblogged this from intothecontinuum
16. intothecontinuum posted this